
	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

	

	

A Method for Product Development

Premise
Concentric is a methodology to deliver finished products in the digital age.

Whether you are developing a piece of software, writing a term paper, working on a
presentation or video, or anything else which is digitally revisable, you have trouble
knowing when to stop editing it. “When is it done? Shouldn’t I keep working on it? I
still have time….”

If you are cooking, building a dog house, making something physical, it is different,
because there are physical limitations that dictate when things are “done.” You can
only cut wooden boards shorter, you can’t make them longer. There is no Undo in
cooking. The processes themselves have an inherent end point.

As human beings, our brains and habits have not caught up with this fundamentally
new ability to keep changing things with no obvious downside.

Except that you probably have made something worse, by changing it at the last
minute, haven’t you? Changing that slide in your presentation 3 minutes before
giving a talk. “Fixing a bug” in a piece of software that actually introduced a worse
problem.

What follows is a radical proposal for a better way to build products, interspersed
with rationale and counter-arguments for all the reasons why at first you’re going to
think it’s a bad idea.

Raison d’être
The Concentric method grew out of the observation that products are almost always
late and have too many bugs. The Agile methodology was proposed around year
2000 as an antidote to the Waterfall method, which was perceived to have failed. My
belief is that Agile is no better, and perhaps worse, because there are built-in
excuses for missing the schedule, disguised as Sprints.

Concentric

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Waterfall
The so-called Waterfall method is basically: “write a spec, then go do it.” This isn’t a
terrible approach, but the scope of the project tended to be 1-2 years of
development without re-assessing if the product was on the right track. It is like
open-water swimming where you forget to lift your head up and look around to see if
you’re still on track.

Agile
The Agile methodology is like a sight-impaired person trying to solve Rubik’s Cube:
<click> Did I get it? <click> Did I get it? <click>…

Concentric
The Concentric methodology essentially combines the best of these two models:

1. Actually write a spec and think through what needs to be done.
2. Build what was spec’ed, but the simplest version of it.
3. Finish it — completely — before you start adding more stuff.

Mantra
The Concentric method answers these two questions:

4. Is it finished?
5. Is it good enough?

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Concept

Approach
The Concentric approach is to iteratively build a product or deliverable in circles (or
ovals, or single-cell organisms with a nucleus), where it is complete, functional,
polished, and “finished” each time you complete one loop.

Concentric Loops
Using the circle as a metaphor, one combines this shape with a process: you go
around the circle, as it were, and come back to close it. The size and ambition of the
circular path is the loop. Loop in this case is more a verb than a noun: loop around,
orbit, go around the whole product once.

What you don’t want is a Spiral, with a rush-to-finish at the very end, trying to bring
it to closure.

The difference between concentric loops and a spiral is that at any given point in
time using the Concentric model, there is the just-previous inner loop that is finished
and closed. A spiral is never finished at any given point in time.

You build on the core product. It’s very much like shipping version 4.0 of an existing
product: the three previous versions are inside it. Except that you don’t want a single
loop that is the entire version 4.0 — that is the secret: do lots of shippable versions
along the way. That is the Concentric method.

Smooth Exterior
Like an egg, all finished products have a smooth exterior, with no visible cracks or
discontinuities.

A fundamental tenet of Concentric is to preserve a smooth exterior throughout the
process — not just at the end.

The basic concept of Concentric as a methodology has three steps:

1. Specify - Plan a specific change to the product.
2. Change - Edit it, change it (and test it).

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

3. Finish - Bring it back to a smooth exterior and save it.

Another way to think of a Smooth Exterior is that it is “shippable,” “finished,” “ready
to give to someone.”

You may not think it’s good enough (does one ever?). That’s where Concentric gets
interesting. You just do it again:

1. Specify - Plan another specific change to the product.
2. Change - Edit it, change it (and test it).
3. Finish - Bring it back to a smooth exterior and save it.

This sounds simple, and it is. What’s difficult is actually having the discipline to do it
this way, rather than leaving it in an unfinished state during the project, and “getting
back to it” the next day, or week, or month.

Inside Out, not Outside In
Most products are built “outside in”: the user experience is mocked up first, it looks
like a finished product, but there is no interior, and nothing is functional. A physical
product is mocked up in foam. A term paper has a strong beginning, the first 4 pages
are great, but it has a great big ellipsis on page 5 ….

Concentric is the opposite: you start with a core, functioning product, and improve it
until it’s good enough — but you improve it in concentric circles, where each time
around you bring it back to a fully functional product with a Smooth Exterior. A
Smooth Exterior is necessary, but not sufficient — the product needs to actually do
something as well (assuming it is a functional product) or convey something (if it is a
work of communication).

No Loose Ends
Above all, Concentric is a mindset. If you know that you have to finish whatever
you’re doing by the end of the [day, week, month] then you start wrapping up at
some point, tying up loose ends, finishing or deleting things that are still underway.

This takes some getting used to, as a methodology, but is not unlike how
construction crews work on roadways in high traffic areas:

1. Specify – Let’s pave the left lane for a stretch of 2 miles.
2. Change – The roadway is blocked off, probably in the off-peak hours of

night; paving ensues, and the 2 miles are completed.
3. Finish – Trucks are moved out of the way, cones are deployed, we create a

pathway for the cars, perhaps in the middle lane, and reopen the highway.

No Stubs or Placeholders
Don’t put in “stubs” or user interface for features that are not yet implemented or
“final content here”, or “to be continued.”

Here’s a simple test to see whether your product is being built in a Concentric way:
you should never hear yourself saying:

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

“Oh,	that	feature	isn’t	working	yet.”	

…or…	

“That	section	is	coming	soon…”	

You will see later in the Methodology section that there are ways to have placeholder
features and sections that aren’t done yet … without compromising the Concentric
notion of closed loops with smooth exteriors.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Philosophy
Why?
Now that you have the Concentric concept in mind, it’s a good time to bring in some
of the philosophy behind this method.

Specification vs Schedule
One of the core tenets of the Concentric Method is that you can choose a feature set
for your product (the Specification), or you can choose a ship date (the Schedule).
You cannot choose both.

Pick one.

Choosing a feature set and setting a schedule simultaneously has been proven over
and over not to work.

People have tried to solve this conundrum for 40+ years. It is not any better than it
ever was. Schedules are “padded” to try to account for this, but just as information
expands to fill all available disk space, so also do tasks expand to fill all available
time. If you give yourself a month, it will take a month. And a half.

Finishing
There are two definitions of Finished:

1. Your Specification has been met.
2. The allotted time has been exhausted.

Running out of time (if you are on a Schedule basis) is like “pencils down” in a
standardized test. You are done because you are out of time. The work itself may or
may not be in a good state.

To correctly manage a Schedule-based finish, you must be prepared to reduce the
feature set or content such that the product can actually be released on the date you
set. This is harder than it seems, but it can be done if the Concentric model is fully
embraced.

If you are working on a Specification-based finish, then you just work on it until it’s
done — you don’t try to also predict when that will be. If you truly need to hit a
specification, then it’s done when it’s done.

“But I Disagree”
You may be dissenting in the back of your mind: “But in our case, we need to hit a
specification and be done by January.”

To repeat: Pick one.

If you still can’t resolve this and you think that you really can pick both a
specification and a schedule, ask yourself this question:

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

“What	will	I	do	if	the	product	is	not	finished	on	the	specified	date?”	

If you seriously ask yourself that question, and take your own answer seriously, you
will realize that there are only three possible answers:

1. We will have to move the scheduled date out and finish it
2. We will have to release what we have, in whatever state it is in.
3. We failed.

If you answered (1) to that question, then you have chosen the Specification model.

If you answered (2), then you are on the Schedule path.

If you can’t budge on either one, then you either ship what you have, or you give up.
They evaluate to the same thing: you failed. This is, surprisingly, the most
commonly chosen option.

Moving the Goal Posts
A classic thing that happens with most/all product development projects is that in
setting both the schedule and the feature set, you run out of time before the feature
set is realized, so you move one (or both!) of the goal posts.

1. Revise the feature set / Specification
2. Move the ship date into the future

If you are reading this document, you have been there. It is, of course, okay to
move the goal posts, but it does mean that your methodology has failed you. It is
likely because you have chosen both schedule and feature set. This cannot be
overstated: if you really have a hard ship date, then your feature set HAS TO
CHANGE. And vice-versa.

If you truly are able to move the goal posts, then your “hard finish” date wasn’t
really that hard a date, was it? It was just an arbitrary date that you picked to
motivate the team. I will argue that arbitrary dates do not motivate teams. Fear of
failure motivates teams, but arbitrary dates do not.

If you can’t move the goal posts — you are really and truly out of time and money,
or you give up — then yes, you are finished, but perhaps not in the way you
envisioned.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Methodology
If you’re still reading, then you may have accepted some of the premise of
Concentric, and wondering just how to go about it. The good news is that it’s
straightforward and actually easier and less cluttered than other methods, but does
require, above all, the correct mindset.

Round Trips
Loops, cycles, concentric circles, you get the metaphor, right?

The Loop
The fundamental concept of the Concentric method is simple: execute a complete
change to a product in one cycle, start to finish — with the emphasis on finish. Close
the loop before doing the next thing. Each Loop adds to the product, as it grows
outward in a holistic way.

The scope of any given Loop doesn’t matter: it could be a little thing, like a change
to the user interface, or an entirely new feature set, or anything in between.

It is a round trip or a Loop because you end where you started: with a fully
functional product.

Inner Core
But what’s the innermost Loop? Where do you start?

To bootstrap a Concentric project, you have to start somewhere — think of the
simplest possible instance of your project that will have a Smooth Exterior. A
minimalist, but complete product. “Not quite good enough,” perhaps, but complete,
with a Smooth Exterior. Some examples follow, as this is a critical thing to get right:

Software Examples
Many of the people reading this will be software engineers, so we will start there, but
it is not the only meaningful application of Concentric.

Web App
Your app has a correct URL, a real server in place, a working home screen, is
connected to the DB as designed, and does one thing correctly. That is, it has a front
end, a back end, and is functional.

Consider this carefully. This does not mean that it “runs on your machine”, or has
hardwired parameters, or has a wireframe, non-functional user interface. It does
mean that the product is finished, works with the final architecture in place, etc. So if
you’re planning to deploy the web app on an AWS server with a Mongo DB and an
Angular server … do that first, not last.

It does need to do something, to be a valid Inner Core. Maybe create a user login
(email address, password, validation, etc). It doesn’t matter if the functionality is

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

extensive enough that someone would actually want to use it. It just matters that
there is a final-form feature, and it works correctly all the way through to the DB.

Movie-Editing app for MacOS
The product has a basic feature set, can capture video from a camera, edit it, and
make a finished product out of it. Copy/Paste and Delete are working, so a movie
can be reduced in time (the main editing paradigm) and get rid of sections that suck.

iMovie 1.0 was developed and shipped in less than a year, on a Schedule basis: it
was going to be done for a January MacWorld release, no matter what. There were
several features in progress in November that were removed (hidden) so that the
product could ship on time. They were unhidden and made available in later releases
of the product. Note that for this team, a Loop was typically one day, and the app
would be released to testers every day, even early in development where it didn’t
have the full feature set that was anticipated.

Other Digital Examples
The idea of an Inner Core for a product that is not software is a little different. Here
are some examples.

PowerPoint Presentation
A presentation is a digital deliverable, and can be developed with a Concentric
approach. Start with the introduction and the conclusion, and maybe one or two
content slides. Like this:

1. I’m Glenn Reid, and I’m here to tell you about the Concentric method
2. The concept is simple: you create a whole, minimal product first.
3. Then you add to it, iteratively, and make it whole again each loop.
4. If you have the discipline to actually finish it each loop, that’s all there is to it.
5. Thanks for listening.

A Term Paper
A written piece like a term paper is just like any other digital work, and can be
constructed with the Concentric method. You write the beginning a [probably short]
middle, and the conclusion. It reads through coherently, and could be considered
done.

Then you go back and add to the middle.

A Book
A long, structured written piece like a book is a bit of a challenge, but it can be done
too. The key is that the Inner Core is probably pretty meaty.

Construct the beginning, middle, and end, like your term paper, but probably there
are chapters. What’s the minimum number of chapters you could get away with? 3 or
4, maybe? How short could each chapter be, but still feel like it’s an actual book?

Let’s say you write 4 chapters of 10 pages each, plus intro/conclusion, and you have
a 50-page book. That’s your Inner Core. It’s probably too short, but maybe not
Maybe you’re done, and it’s just a short book.

If you’re not done (see above), then Loop in another chapter.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Closing the Loop
A critical (and sometimes difficult) discipline in Concentric is actually closing a Loop
and bringing the product back to a Smooth Exterior. It’s tempting to leave some
loose ends hanging, leave some scaffolding in place. You can do that, actually, but it
just means your Loop cycle is taking longer than expected, because it’s not closed.

For each product/project, it is important to define what “done” is — what are your
criteria? The easiest way to do this is to create some tests, often in the form of
hypothetical questions. Here are some examples, mixing different kinds of
deliverables. You have to be able to honestly answer “Yes” to your tests in order to
declare a Loop to be done.

1. Can I send this to my boss?
2. Can I ship this to my customer?
3. Can I email this to a reporter who might want to write an article?

A cursory glance at a list of questions like this makes you think, “hey, those are the
criteria for when it’s done-done.”

Exactly.

The definition of “done” for each Loop, the criteria for closing the Loop, is that you
would actually be willing to stop and send it off into the world.

Remember at the beginning of this treatise, the two fundamental questions:

1. Is it finished?
2. Is it good enough?

It’s critical that at the end of each Loop, it’s “finished”. Whether or not it is good
enough is a separate issue, which often is decided by a third question:

3. Do we have time to do another Loop and make the product better?

This is the core idea in Concentric. Don’t just be “finished” at the end (or “almost
finished, as it usually turns out”). Be “finished” several times during the life cycle of
the release, and pick the best finished product as your deliverable.

It really does work, and it works better than trying to fit ten pounds of shit in a five
pound bag, which is the typical product release exercise.

“But, but, but … wait!”
You are perhaps thinking that this is an impractical method, that surely you can’t do
all that work to finish the product multiple times during the release cycle. Finishing a
product is a lot of detail work, fixing bugs, finishing sentences, proofreading … can’t I
leave that till the end, and work efficiently during the project?

No, you can’t. Sooner or later you have to do the detail work, fix the bugs, proofread,
and if you leave it to the end, you’ll realize you spent too much time on the middle
part (the features, the content) and you won’t have enough time to polish it up. If
you’re honest with yourself, it has happened every single time, with every product
you’ve worked on, with every team.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

But there are ways to proceed where you can have the best of Concentric while not
quite finishing bits and pieces along the way that really do take a long time to do.

Feature Hiding
Feature Hiding is a way to develop a feature in such a way that nobody knows it’s
there until it works correctly, and lets you maintain a Smooth Exterior while actually
continuing to work on something that takes a while. This is the opposite of how most
features are developed, but it is a much better methodology.

A feature can be thought of as some Functionality, a way to Invoke it (controls) and
some Feedback to the user that it is working.

§ Invoking mechanism
§ Function
§ Feedback that it is working

For a software feature, the invoking mechanism might be a button or a menu item.
Often there are parameters that are involved as well that need to be input by the
user (check boxes, text fields, etc, that provide parameters to the operation).
Collectively these are the Invoking Mechanism.

To see that a feature is working, there is typically some kind of feedback. For
software this could be a confirmation dialog, a progress bar, a visual display, a small
message in the corner that says “done,” or some combination of the above.

In a presentation, you can “hide slides” for unfinished parts of your work. If you are
writing a book, you can have a separate file for a chapter that is in progress but not
yet complete.

For mechanical products, there are similar concepts. It is a little harder to hide a
mechanical feature than a software feature, but it is possible. There are many
products already on the market that have “missing” features, where perhaps several
models of the product exist, some with the extra controls/hardware, some with a
panel that covers where the feature might go. You’ve no doubt driven a car with a
plastic insert covering a hole into which the switch would go, had you ordered the car
with that feature. Feature Hiding.

This is another key concept to the Concentric Method: develop all features essentially
as hidden features, then “un-hide” them at the end, when they work and have been
tested. During development you put the Invoking Mechanism and Feedback
mechanism into the product, work on it, then remove them (hide them) when you
commit the changes.

If a feature is invisible and can’t be invoked, it can’t “break,” and the product will be
releasable without the feature. This is a very important concept.

If a feature can be implemented and tested in a single day, then you don’t need to
hide it. If it cannot, then you need to add/remove the feature every day when you
commit it.

Pitons
There are many parallels between rock climbing and product development. Technical
climbers plan a route to the top, but they also allow themselves to make
adjustments in the route depending on what they encounter.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

A “piton” is a piece of metal that you hammer into a rock face that is strong enough
to support many times your weight. You secure a rope to it, then climb above it. If
you miss a handhold and fall, you will [hopefully] fall no further than 2x the amount
of rope you climbed above the piton. If you feel good about the progress you’ve
made up the wall, you hammer in another piton.

In product development, a Piton is a metaphor for a safe state to which you can
return if things don’t go well. You almost never need them (or perhaps you just don’t
want to go backwards) but they are still a good idea, partly to add structure to your
progress.

Pitons: bang them into the wall frequently.

If you are building software, a piton is basically a code check-in to your source code
control system. You commit the changes you’ve made, usually at a known, working
state. It is important to do this no less frequently than once a day, and more
frequently as you reach micro-milestones of safety.

Example:
Concentric: Change an API call — and all instances of the code that
calls that API — test it, and check it in.

Other: Change an API call, then write the code that you need that
calls that API, then go back later and change all the other code that
calls it. If more than an hour (or at worst a day) goes by before you’ve
changed all the instances ... you have created a bad situation.

All of the Above
Like any methodology, some of these concepts are optional. You can pick/choose
what you want to use, but you may be subverting the value of the methodology.
These are battle-tested concepts, not academics. Concentric is not a difficult
methodology, but the more of it you follow, the greater the benefits.

It works. It makes sense. Close the Loops, every day, and finish every round trip.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Concentric in Action
In this section we look at some real-world examples and build upon the ideas
established so far.

Inner Core
Remember that to bootstrap a Concentric project you have to build an Inner Core.
This is, in a way, the “MP” in the popular phrase “MVP”. Consider our two key
questions from the beginning of this treatise (yes, again):

1. Is it finished?
2. Is it good enough?

The answer to the first question, “Is it finished?”, is an MP, or Minimum Product. Yes,
it’s finished. It works, it is a product. “Is it good enough?” The word viable, in the
over-used Minimum Viable Product acronym MVP, is the answer to this question. If
it’s good enough, it’s viable.

Example: Web App
Let’s consider a web app as an example. It typically has these components:

§ A site that hosts the web app
§ A page that loads from the server containing a Javascript user interface
§ A server back-end API to add/edit/delete pieces of data
§ A database in which to store the data

Right Way
A correct, Concentric-based approach would start with the Inner Core and would
implement all of those components end-to-end, for just one small feature. The
database might just contain FirstName, LastName, EmailAddress, and Password. The
Javascript front end might be a form that allows you to enter your name and address
(create an account), and probably should provide a way to reset your password,
delete your account, and whatever else you want in your first working product
release. But you’d have a complete system: a form to fill out, a server-side API to
call for CreateAccount, DeleteAccount, and EditAccount, and a database to store
them. Finish it. Test it. Release it. And go back around the loop again if need be.

Wrong Way
The wrong way to develop a web app is to lay out all of the UI for all the features
you want to implement, wireframe them, and have someone work for
days/months/weeks to refine the user interface — meanwhile in another room, a
programmer is sketching out the whole app, with all the features laid out, but none
of them working yet (“stubbed out features”). In a third room, a database engineer
is designing a complicated Schema for all the bits of data that the app might ever
want to store, and yet a fourth room, a back-end developer is writing an API for all
the features to use.

In other words, the entire app is assembled from the outside in, and it looks like it
works, because all of the UI is there, but it doesn’t work, or worse, you aren’t sure

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

what is supposed to work and what is not, so you can’t even test it. “Oh, yeah, you
can create an account, but it’s not saved in the DB yet,” said almost every
development team ever.

To truly build an Inner Core for a web app, consider these steps that are typically left
to the end:

§ Create an AWS instance and give it a domain name (yourcoolapp.com).
§ Allow users to create user accounts, edit them, delete their info, log in, etc.
§ Create and install an SSL certificate.
§ Get payment system working and be able to take credit cards.

Consider this list carefully, and consider the core premise of Concentric, that you
have to choose between Schedule and Features. If these features (logging in,
changing email address, setting up payments) are mandatory, that you literally
cannot ship your product without them, then you should do them first, as part of
your Inner Core.

I guarantee that you’re not agreeing with this idea, but here is why you are thinking
that:

§ You hate installing SSL certificates.
§ The payment systems are a pain in the ass to set up.
§ Editing and deleting user accounts isn’t critical functionality: it’s just another pain

in the ass.
§ We don’t know what we’re going to call it yet, so we can’t register a domain

name.
§ AWS is a pain in the ass, and it’s faster and easier if I just use an internal server.

While all those things are true, and understandable, it doesn’t change the fact that if
they are core, important features, and you can’t be finished with your product
without them, then they need to be in the first truly “finished” Loop, which is the
Inner Core. Think about that for a while.

I also guarantee that if you follow this methodology, you will send me a personal
note of thanks later, because all that grungy stuff was done early on, and the end of
the project was totally fun and you were done on time.

Note also that in the above list there is a step to register the domain name and point
it at your AWS instance (and get the SSL certificate set up). If you finish this, and it
works correctly, you can still invoke the “Is it good enough?” clause, and do another
Loop later to change it to some other name. It will be a lot easier, because it’s
already set up — you just have to register a different domain name and get a new
SSL cert. At least you know where to put the cert files on the server, and which
config files to change, so that Loop will go quickly.

If you leave these small issues till the end, like creating real user accounts, or more
commonly, having the ability to edit and delete them, you realize it’s a lot of work,
and it’s not usually budgeted in the schedule. If you get the main features to work
but don’t bother with user login up front, you can give a great demo to your boss
and make it look like you’re making great progress, but you will pay for it later, and
your project will not be done on time. Right?

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Work Backwards from Deliverable

What are we Building?
A Specification is a written description of a product that clearly specifies how to build
it, but more importantly, what it will be when it’s done. It could be a very simple
statement, or a fully-detailed document with every scenario spelled out. If done well,
it will be clear when it has been achieved, and it can be used as an argument for
including or excluding a feature: “it’s in the spec!” or, conversely, “it’s not in the
spec!”

Example:
Steve Jobs Spec: Build me a movie editing app that can import video
from a camera, trim/edit the clips, add a few simple titles and
transitions, and save it in a few useful formats. And make it not suck.

Actual iMovie 1.0 Spec: A 22-page document with screen shots of
sample features, specifics as to formats, cameras, and data models.
Many details thought through in advance, features envisioned,
boundaries created.

Agreeing on what a product should do, and how it does it, is critical to creating (and
finishing!) any product. You and your team and your customers can agree at any
stage along the way, but eventually, you must reach agreement. If you don’t specify
anything up front and just go organically build a product, and people use it and like it,
clearly you’ve succeeded. If you tightly specify a product, build it, and no one wants
it, clearly you’ve failed. There are a lot of in-between scenarios, but if you never nail
anything down, you won’t know if you’re done or not. Maybe you don’t care, but then
again, you are reading a document on product development methodology, so
probably you do care.

When is it Done?
If you start by defining what “done” means, you are working backwards from a
deliverable. This is crucial. Do it. Decide if your schedule is important, or your
feature set. Choose one. Because that is how you will know when it is done;
remember this?

There are two definitions of Finished:

1. Specification has been met. Features are implemented.
2. Allotted time has been exhausted.

Work Backwards
If you know what Done looks like, then you try to figure out how to get there.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Context

Comparisons
The “Waterfall” method of yore is simply one very large Loop, with a long timeline. It
has been shown to be deficient through years of trying, though it’s not inherently
bad. The problem with Waterfall is that with a long timeline (a year or more,
typically) by the time you figure out that the time/schedule you allotted was not
enough to finish the feature set you spec’ed, you’ve dug yourself into a hole that’s
hard to get out of.

The “Agile/Scrum” method of today is no different than Waterfall, in that short
“sprints” are arranged (Schedules) but if the product is not releasable/shippable at
the end of each sprint, all you’re doing is creating more (highly time-padded)
milestones along the path to your Waterfall. But worse, you are probably also
changing the feature set after each sprint. You are, aren’t you? That’s what a
“backlog” is – all the features you still want to do.

Agile/Scrum isn’t inherently bad, either — it is one way to organize a project, and it
can be made to work, like any methodology, but it has some weaknesses:

§ You are setting specific feature sets and the timeframe in each sprint.
§ Focusing on short-term goals can cause you to lose the big picture.
§ If the feature set is changed as you move tasks in and out of the backlog, you are

moving the goal posts a little bit every day.
§ Focusing on short term goals provides a feel-good framework that creates an

illusion of progress but may be masking divergence from major goals — like
actually finishing the product, and having it be cohesive and great.

There is an adage among writers in expository writing that goes something like this:

§ Introduction: Say what you’re going to say
§ Body: Say it
§ Conclusion: Say you’ve said it

Product development is kind of like that:

§ Scope: Say what you’re going to do (a Specification or a Schedule)
§ Body: Go do it
§ Conclusion: Fix the bugs, tie up the loose ends, and release it

Waterfall is a year-long version of this; Agile is a two-week version of the same thing.

Concentric is an Overlay
The Concentric Method is, to a large extent, compatible with both Agile and
Waterfall: it sits above the tactics, like a watchdog, making sure it gets done. It is a
way to enforce milestones such that they are sewn up and releasable, that’s all. It
can be time-based, or it can be feature-based.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

If you use Concentric but have just one very large Loop rather than iterating, then
you are actually using the Waterfall method. When you resolve the “is it finished?”
and “is it good enough?” questions, you will find out if you were on a Schedule basis
or a Specification basis.

If you use Concentric but have many short Loops, and you actually finish the product
at the end of every loop, rather than leaving loose ends, then you are also following
the Agile/Scrum method. But if you leave the product in an ambiguous state at the
end of Loops, and it does not have a Smooth Exterior, then you are following neither
method, and you have the worst of both worlds. Doesn’t that sound familiar? That’s
probably what you’re doing now: loosely following Agile/Scrum, but ignoring the
fundamental questions “is it finished?” and “is it good enough?”

Don’t Let the Tools Dictate your Process
If you use an Agile platform like Jira, you are conforming your product development
process to match their way of thinking. It is better to decide on your methodology,
then choose the right tools to support it.

Every tool can be configured, and every field in a database can be tweaked to do
what you want it to do, or not be used at all. It is the process that matters, not the
tools.

Example:
Concentric: A milestone or to-do item or “story” is crafted that
matches the pitons you set mapping your path.

Other: A milestone or to-do-item is created that seems like something
that should take two weeks to accomplish.

Why is Concentric Better?

“It	just	sounds	like	more	work,	but	not	better	than	Agile/Scrum”	

Concentric is a proven way to deliver a product on time. It forces you to maintain a
product in “ready to go” state at all times, or at least with predictable cycles between
states of ready-to-go.

The reason it works is derived from human nature and countless examples of things
that didn’t work, processes that left products not ready to ship, and lots of blame to
go around.

Concentric is about accountability. If the product is brought to a fully finished state
with a Smooth Exterior on a predictable cycle, you don’t have to rely on the “best
guess” of individual contributors.

Human Nature

Scheduling
If you ask a team of people to estimate how long it’s going to take to do something,
you get a combination of optimism (“I can totally do that in a week”) and
sandbagging (“but I’d better add a week of padding”). Neither is a good way to
design and schedule a project.

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Fun vs. Tedium
It’s always fun to create something new, think big thoughts, or tackle interesting
problems.

It’s not much fun to fix bugs, make design compromises, make file formats
compatible with previous versions, get Undo to work, settle for a cost limitation, or
do proofreading.

When a deadline approaches, which do you think is going to get neglected?

	
	

Version 0.8 • 19 May 2023 • Copyright © 2023 Glenn Reid, all rights reserved.
This document was prepared using Concentric methodology.

Take-away Concepts
§ Iterative: The process is inherently iterative, but not [necessarily] on a fixed

time basis.
§ Mini Releases: At the end of every loop, product is “released,” or at least it could

be, because it is finished.
§ Schedule vs Features: Is the feature set critical (MVP)? or is the schedule? Pick

one.
§ Closed-Loop: Product is fully functional and “finished” at the end of every loop.
§ Feature Hiding: Unfinished features are hidden/disabled until fully functional.
§ Pitons: Analogous to rock climbing, pitons are placed for backing out changes.

